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ABSTRACT
A continuu® gtructure function is 2 nondecreasing mapping from the 'P-..,'.“_-
i
unit hypercube to the unit jnterval. p definition of the reliability ’:.‘4.
jmportances Ri(“) say, of component 1 at level ¢ (0<u<j‘) is proposed.
Some properties of this fFynction are deduced, in particu\ar conditions
ynder which 1im P‘i(“) = 1im R_.‘(H.) = ( and conditions ynder which
[§Red 7,~7‘ .':-.
Ri(xt) is positive (Om«\). .
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1. INTRODUCTION
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Let ¢: 0,1}" {0,1} be a binary coherent structure function and
let h: [0,1]" = [0,1] be the corresponding reliability function (see

Barlow and Proschan (1975a), Chapters 1 and 2). The reliability

- importance of component i is defined as

(i=1,2,...,n), writing (Bi’E) = (p],...,pi_],B,pi+],...,pn) where
é p; = P{Xi=1} and where X]""’Xn are independent binary random variables
' denoting the states of the components of ¢. This definition is due to
Birnbaum (1969); see Barlow and Proschan (1975b) and Natvig (1979),
(1984) for some alternative approaches. Various authors have proposed
extensions of this concept to the multistate case (e.g. Barlow and Wu

(1978), Griffith (1980), Natvig (1982), Block and Savits (1982)), but a

general theory of reliability importance for structure functions on
domains other than {0,1}" has yet to be developed. In this paper, we

present a definition of reliability importance for continuum structure

o functions (CSFs), i.e. mappings of the form y: A [0,1], where & = [0,1]", ;;::j
which are nondecreasing in each argument and which satisfy y(g) = 0 and L
Y(l) = 1 where g denotes (B,...,8). See Block and Savits (1984) and

Baxter (1984), (1986) for further details of CSFs. The reliability T

o vﬁl v

importance, Ri(“) say, of component i {i=1,2,...,n) will depend on the *::;E
state a (0<a<l) of the system. Our main results are conditions on y under

which lim Ri(a) = Tim Ri(a) = 0 and conditions under which Ri(a) is positive.
o0 o1
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We shall make frequent use of the following sets:

U, = {xealy(x)>a}
La = {ZﬁAlY(L)S‘}
Pa = {x€A]y(x)>x whereas y(l)<a for all y<x}
K = {x€aly(x)<« whereas y(y)>a for all y>x}

where y<(>)x means that y < (>)x but that y # x.

2. KEY VECTORS
The motivation for our definition (below) is most readily understood

by observing that one can write
[(i) = PLa(X)=T[X.=1} - P{o(X)=1]X,=0},

i.e. I(i) is the probability that repairing component i will restore

a failed system to the operating state (or, equivalently, that the failure
of component i will cause an operating system to fail). A possible

generalisation of I(i) to the continuum case would be to regard part of

the unit interval, say [0,a) (O<a<l), as corresponding to the failure -

states of the system and to regard [a,1] as the operating states, in which Z?i?§3

case one could define the reliability importance of component i (i=1,2,...,n)

tO be - :f_r:!.

P{Y(i)zalxi_{a} - P{YQ(,)Z“H‘-(“}‘




Consideration of the CSF Y(x],xz) = X%, suggests that this definition is
not wholly satisfactory: if x; = x, =B € [a,Va) (0<a<l), then neither
component is in the failed state even though the system itself should be

regarded as failed. This difficulty may be circumvented by replacing

a by a suitably chosen element of aUa; considerations of symmetry indicate

that the vector chosen, called the key vector, should also lie on the '?ﬁf
diagonal of the unit hypercube. Hence, before proceeding to a definition iifﬁg
of reliability importance for CSFs, it is convenient to define and study ' “'I’
the key vector of U . L

A

Definition 9
Let H = {glg:ig:il} be the diagonal of the unit hypercube. We say =
that the vector § = 8(a) = Hnay is the key vector of U and we call

6 the key element.

Lerma 2.1
The CSF y is right {(left)-continuous if and only if each Ua(La)

is closed.

Proof: A CSF is right (left)-continuous if and only if it is upper (lower)

semicontinuous which js the case if and only if each Ug(Lg) is open

(Royden (1968), p. 161). []

Theorem 2.2

For any CSF y, the key vector always exists and, if y is continuous,

v(8) = a for all a € (0,1]. -

..........
.......................
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Proof: To show that the key vector exists for any CSF, it is sufficient
to show that HnBUa # 9 for all a € (0,1].
Let v be an arbitrary CSF. Then 1 €~Ua for all a € (0,1] by definition,
SO U; # 9 for all a € (0,1]. If U, = ﬂ&, it is immediate that Hnauq 0
since 1 € HfWUé for all a € (0,1]. Suppose that 3y  is a proper subset
of U and consider A' = A-3U . Since U and U_ are disjoint and 3U_ is AT
a a [o o o A
a proper subset of U , it follows that a* = (USul ) - au_ = USu (U -aU )
a ¢} [0 [o§ o (o} a
is a separation of A', i.e. A' is a disconnected set. Now suppose that
waﬂua = @ for some o € {(0,1]. Then, for all BEH B¢ aua, so He A'.
Clearly, H is connected. Since A' is a disconnected set with separation

UéiJ(Ua-SUa), H must be properly contained in either Ug or U&-QUG. Since

aua is a proper subset of U& and since 1 € U&’ it is obvious that 1 ¢ aUa,

ie. 1€ U&- aU,, and thus Hf1(U§-8U0) # @. Further, since o € (0,1],
g € Ug, o) Hr\Uﬁ # 0. This is a contradiction to the assertion that H must

be properly contained in either Ug or U&-aua. Thus HrwaUG # 0 for all
a € (0,1] for any CSF, as claimed.

We now show that if y is continuous, then Y(g) = a. Since, by
continuity, 6 € aUa c UG, it follows that v(8) > a. Suppose that there
exists an o € (0,1] such that Y(Q) > o. Since § € aUa, for any ¢ > 0
and for all n we have § - 2-n£ € H whereas 6 - 27'¢ ¢ 2U s 50
n

5-2"g €U, ie §-2

~ ~ (o]

, -n .
€ € La. However, 1im (E—Z e) ¢ LG 50 La is
N -~ ~

not closed. Hence, by Lemma 2.1, Y is not continuous. This is a con- C

tradiction and so v(8) = a as claimed.

This completes the proof. []




Since the key vector 6 exists for any CSF and for any o € (0,1],

and since A is symmetric about H, we define reliability importance as

follows.

Definition

The reliability importance R.(a) of component i at level a € Imy - {0}

for the CSF y is defined as

R.(a) = P{y(X)>alX;>6} - P{y(X)>alX;<6}

where X is a random vector and where & is the key element of Ua. (Im vy

denotes the image of y.)

Remarks

1. We may interpret R.(a) as P{y(X) > a iff X, > }.

2. Replacing A and y by {0,13" and ¢, a binary coherent structure function,
respectively, in this definition yields the (Birnbaum) reliability importance
of component i, and hence the above definition is a direct generalisation

of reliability importance in the binary case.

3. BOUNDARY BEHAVIOUR
In this section, we derive conditions under which 1im Ri(') =
S O

1im R; () = 0, i.e. under which component i does not affect the state of
el
the system when the latter is at one of the extrery of its range. The




, following notation will subsequently prove useful: N
A

U(y) = {5€Al£3;¥.} \

| L(y) = {xealx<y} A
fi(a) = P{Y(')\(’)?_alxikﬁ} ”-:_:-:.'_-:
9]-(0() = P{Y()\(’)zcxlxiﬁ}

. where X is a random vector so that R]-((x) = fj(a) - gi(a). NERYS

Lemma 3.1

, Let v be a continuous CSF and write P_ = {y4-t€T(a)}.  Then Lt

: u = U U(y,) .

- teT(a)

: Proof: See Block and Savits (1984), Theorem 2.

'.‘ Proposition 3.2 '

For any CSF v, B

- (i) 1im U_ = A, where A, = {x€Aly{x)>0}

- o 0 0" '~ ~

) o-0

_ (1) 1im U = a; where A, = {x€Aly(x)=1}.

o1 « ~ ~

)

- Proof: Since y is nondecreasing, Ua o) UB whenever a < B. s

; (i) For given « € (0,1), let N be a positive integer satisfying ]NS a. - 2

. Further, let a > oy > a, >-++> 0 be a refinement of [0,a) where - ::-I:_

Y % .

) o . . . . - .

- am=]/(N+m). Then the sequence {U1/(N+m)}m=1 is increasing with limit

)

.................................................................
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1‘im u_ = lim U1/(N+m) = r&'!] U'l/(N+m)' We show that n\1'=)] ul/(N+m) = 4

Let x € [%J] U]/(N+m); then x € Ul/(N+m) for some m so that y(x) > 1/(N+n) >0,

(3]

. i.e. x €4, and hence &131 U]/(N+m) < :\0. Conversely, let x € Ag- Then
y(x) = 8 for some g > 0 and there exists an integer N' such that
i &. < B and an integer m such that N+m > N' so Y(i) =B > ﬁL—z 1/ (N+m)

and x € Uy /(yy)> hence A0<:I#A U o)

) (ii) The proof is similar. []
Theorem 3.3
i Suppose that y is a continuous CSF and that )(1,...,Xn are independent,

absolutely continuous random variables.

(i) If for all y € Pys y5 © 1 for some j # i, then Tim Ri(a) = 0,
i o1
4 (ii) 1f for all w € Ko Wi = 0 for some j # i, then lim Ri(a) = 0.

a-0

Proof: Since y is nondecreasing, for any a € (0,1]

PiXEU 1X;=0} < fila) < P{XEU 1X,;=1}
and
d
) PIXEU 1X.=0} < g;(a) < P{XEU, IX:=1).
, Thus, if we show that Tim P{X€U_IX;=1} = 0 under the hypothesis of (i),
o] )
then lim f.(a) = Tim g.(a) = 0 so that 1im R.(a) = 0. Further, if we show
o} o-1 a-] ‘
| -.. @
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that lim P{1§U01X1=0} 1 under the hypothesis of (ii), then

a0
1im fi(a) = 1im gi(a) = 1 so that 1im Ri(a) = 0.
o-0 o0 o0
(i) Since, by Proposition 3.2, lim U, =4 = {xealy(x)=1}, it follows
o] ~
from the continuity of probability measures that 1im P{XEUalXi=1} =
o1 ~
P{Z§A1|X1=1}. We show that P{5§A1IX1=I} = 0.
Define P% = {XﬁP]lyj=1, J#i} and write P% = {)%,TET(j)}; by

hypothesis, the P‘]}'s (j#i) form a partition of P,. Define

Aj = (.) Uly ), j#i. Then, by Lemma 3.1, Ay = Uy = t} A., so
€T(§) jF Y

PiXeay1X. =1} = p{ge'Lf}. A1),
JF1

By the inclusion-exclusion principle,

n-1 01
P{ZﬁA][X1=1} = QE] (-1) Ty
where n, = Z P{EEA nA, n--.nA, [X,=1}.
g T<ky<ky<n - o<k <n-1 ki kg kg

kjfi for j=1,2,...,¢

We show that n] = 0.

By definition, ny, = ] P{XeA,|X.=1}.
Vo~

Let z_ = inf y
reT(j) 19

d] . = ;-9] --..y‘f" \({ R }'., N X ';".’ .
and let QJ [iJ ] [,J 1] 1}J><[,J 1] [‘J 1] where the subscript

Jj on {1} indicates that this is the jth term in the product. We claim

, 3, q=1,2,...,n and gj = m1n(z],...,zj_1,zj+1,...

zn),
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that Aj c Qj' Let x € Aj. Then x € U(Xq) for some T € T(j), and hence
x> ¥ and Y5 =

Thus xj = ] and xq

1,

so that xj =1 and Xq 3.zq for g=1,2,...,n, 9 # j.

> gj for q=1,2,...,n, q # j, from which it follows

that x € Qj. This holds for all x € Aj, ¢] Aj c Qj‘ Hence

1[1

~

.>‘
J#i

POXEA X471

1l

il

j#i

1%
~y
——

seons ks ey Xe=1, X, AP {
g1 00 KT Ry 2 by

0 since each Xj is absolutely continuous,

b0 Gy = 0 as claimed.

Since, for any ¢ - 2, =, < my = 0, we see that P{X€A,}X,=1} =0

as claimed.

(ii)

The proof is similar. []
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h 4. A CONDITION FOR POSITIVE RELIABILITY IMPORTANCE __‘;
- In this section,we derive a condition under which the reliability o
importance R]-(a) is positive for o € (0,1). \
:\:‘:-
el
Lemma 4.1 <
Let v be Lebesgue measure on R". Then
(i) ~{U(y)t = 0 if and only if ;i = 1 for some i=1,2,...,n
{L(y)} = 0 if and only if Y * 0 for some i=1,2,...,n
(1) 1U U(y,)? = 0 if and only if v{U(y,)} = 0 for all t €T S
teT -
U Liy,)1 = 0 if and only if w{L(y,)) = 0 for all t €T
t t
teT
where T is an index set.
i
Proof: (i) This is trivial. e
(i1) Suppose that \){U U(yt)} = 0 and that, conversely, there exists some
teT ~
t' € T such that »{U(y,.)} » 0. Then w{{JU(y,)} = viU(y, )} ~ 0, a
Lt teT At At
contradiction. _
Suppose, now, that V{U(X,t)} =0 forall teT. Let A" = A - (O,])n;
clearly via"} = 0. Llet x € U U(yt); then x € U(Z,t> for some t € T.
Since v{U(yt)} =0 for all t € T, it follows from (i) that y; = 1 for some .
_ i=1,2,...,n. Thus, by definition of Uly,), x > y, fmplies x; =1, i.e. N
. x € A". This holds for all x € U U(Xt)’ o) U U(;Xt) c +" and hence il
' ~ Y teT teT _
2 -
- S URTCATEN:
. teT ~
-
.
i
e
b e el e T L T T T T e e e e
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A similar argument shows that v{(} L(Xt)} = 0 if and only if
teT

vil(yg)} = 0 for all t € T. ]

Theorem 4.2
The distribution function F is absolutely continuous if and only
if p << v where v is Lebesgue measure and where u is the induced Lebesgue-

Stieltjes measure satisfying p{(-»,x]} = F(x) for all x € R.

Proof: See Billingsley (1979, p. 367).

Proposition 4.3

Let v be a continuous CSF. If v{Ua} > 0 for o € (0,1), then

& € (0,1) where 6 is the key element of Uy

Proof: We show that & ¢ {0,1}. Suppose that & = 0 for o € (0,1}.
Since y is continuous, & = 0 € aUa < Ua’ and so Y(Q) >a >0, a
contradiction to the definition of y.

Suppose, now, that & = 1 for o € (0,1) and let A" = & - (0,1)".
We show that Ua c a". It is sufficient to show that for all x € Uys
xj =1 for some i=1,2,...,n. Suppose, conversely, that there exists a
vector x € U_ such that x, < 1 for all i=1,2,...,n. Then g =
max(x],...,xn) < 1 and £ E Ht}Ua, in contradiction to the assumption that
§=1¢€ Hr]aUa. Hence, for all x € Ua’ X5 = 1 for some i=1,2,...,n soO
that Uy A". Since v{a"} = 0, we see that v{Ua} = 0, a contradiction

to the given hypothesis. []
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We introduce the following notation for future reference. Let i

D, = D;(8) = [0,1]x--x[0,1]x[6,11,x[0,1]x- - -x[0,1] an
i

E] = E'I(é) = [0,]]’('"X[O,]]X[O,é)iX[o,]]X'°-X[0,]] ':':\—.:'\
vaALN

where the subscript i labels the 1th term in the product. iffﬁf
Theorem 4.4 S

Let y be a continuous CSF such that v{Ua} >0 for all a € (0,1)
where v is lLebesgue measure on R" and suppose that X]""’Xn are

independent, absolutely continuous random variables. Then Ri(a) =0

for « € (0,1) if and only if y; = 0 for every y € POl for which V{U(X)} > 0. f
Proof: Define the induced Lebesgue-Stieltjes measure P, = Pgi']. e
Observe that, since, from Proposition 4.3, the key element & € (0,1), N
and since X; is absolutely continuous, it follows from Theorem 4.2 that
P{X;>5} ~ 0 and P{X;<6} > 0. Write P = {Xt’tET(“)}‘ Then, from
Lemma 3.1, U = Lj U(y,)s this is clearly a Borel set and so we can 117
a t .
teT(a) .
write ‘};53
fila) = Pyl U U(ye) ND,}/P{X;>5) .
~ teT(a) s
g;) = Pt U uqg)nepix <o,
~ teT(a) —_— .

-
-

"_I_f_" Define P(I] {X’EP‘LI)’{#] for a]] i=],2,...,n},

P o= {yeP ly;=1 for some i=1,2,...,n} PR

..............................................
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and write P, = {X&,ILeL(a)} and P , = {XS,S€S(G)} for suitable index sets
L(a) and S(a). Then, from Lemma 4.1(i), v{U(xQ)} > 0 for all 2 € L(a)
and V{U(X,s)} = 0 for all s € S(a), so, from Lemma 4.1 (i),
(4.1) v{ U U(xs)} = 0. v
se€S(a) .
Now ‘ a
Pyl U Uy,) nD;} :
~ teT(a)
cnit Uy U ugornop e
~ gfel(a) " seS(a) A
-pt U uggnog + e U ugg)nog 2
~ g€eb(a) ~ s€5(a)
e U Uty 0 U uy)nog. D
L geL(n) "~ s€S(a) o
Consider the second term in this sum; clearly _
p{U CORLLEEEN U U(xs)}=0 T
X s€S(a ~ s€S(a
from (4.1) and Theorem 4.2. Similarly, the third term vanishes, and hence o
Py U U(ye) ND;} = Pyl U U(y,) N Dy}
X teT(a X 2€L{a
Since, by hypothesis, y; = 0 for all y € P_;, U(y) must be of the \..
form .‘_‘:;f"--::

[)’1 J1]x- ..x[yi_] ,]]x[O,]]x[y1.+] ,'l]x- . .x[yn,]]




and so

Thus,

(4.2)

By a

Thus,

(4.3)

..........
..............

.....

e N TR A A Y T R W T S TR

v

~ L€l (a)

pt U

2€L(a)

JE

2€L (o)

U(X&)nDi}

>

! {Xj z_yij}rw{xi > 6}}

N x

ALY

()
“H

}P{X; >38} by independence.

<
a—

f-=rt U N > ¥, )
! ella) j#i 977N

similar argument,

poe U

'2(' tET(d)

PX{[ U

~ 9€el{)

pt U

~ 2eL(a)

et U Oix,

~ REL(-‘L) J#i J

o0 U D x5y HPIX.<s).
Eoella) goi 3~ 7877 1

Ulye) NE;D

U(y,) USELSJ(G)U(ZS)]n N

Uly,) nEs}

g. (o) = P{ LJ (\{X. > Yo:1}.
i tel(a) j#i 9 7Y

................................
............................
......................
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N oo
E From (4.2) and (4.3), we see that Ri(a) = 0 as claimed. NG
"Only if" Since, by hypothesis, v{Ua} > 0 and since, by Lemma 3.1,

u = U U(Xt)’ we see that v{ U U(Xt)} > 0. Thus, by Lemma 4.1 (ii),
Y teT(a) teT(a)

30 i

- there exists some t' € T(a) such that v{U(yt.)} > 0. Write
: _ : - AL
b a7 (P [{U(Y) 150} = (g, t'eT (a)] 7
E PO(b = {X‘EPGI\){U(Z’)}:O} = {Xw,wﬂl(u)}, say. r\
%’ Then Pta and Pub form a partition of Pl. It is sufficient to show that . {
p B 3 .
3 if Ri(“) = 0, then y; = 0 for all y € Paa'
’ Suppose that there exists a vector y € Paa such that Y # 0. Since
v{U(y)} ~ 0 for all y € Paa’ it follows from Lemma 4.1(i) that Y; 1 -
for all j=1,2,...,n and so 0 < yy < 1. Define the partition  :
Po(a = Paal u PaaZU P(m3 where o
"“:'.:’
Pal 7 WEP VUG 10, 3201 = Gy, stel(n) e
P“az = {ZEPQI\){U(Z)}>O, 0<.y1.«,5} = {xS,SES(u)}
P a3 = (YeP [v{U(y) 120, S<y<1) = {y, .meM(a)}, say. s
{

Then, clearly,
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" Piy(X)>a,X;>8} = ng{”a”Di}
- :...,.!
n MR
.: - Py L U | Ulg) v U uyou U uy o, SRS
N L se€S{a) meM(a) ey
N ':-.":\‘t-.
- U U T
' > Py U(y,) v U(y )} nD;] 2aa
X 2eL(a) Ly s€S{a) Ls - q
e U n{x ELICE T ) (\{xj RETEE Sl
2€L(a) j=1 s€S(a) j=1 o
LA
Since, by the definitions of Paa] and paaZ’ {Xi_>ym.} n {Xii‘S} =
{X1._>ys1.} n {Xizd} = {Xi_ics}, it follows from the independence of the Xi's
that P
3 P {U nD } > P U ﬂ{x >Jyu-} U U n {(X.> JS-}]P{XiE‘_\S}, j'.
. reL(a) j#i seslo) j#i I »
r ”
and hence
@ et U Nogyae U Ny
9l () j#i 2 seS () j#i
By a similar argument,
a r
PL(X)>ws XKio8} = Py (U nE;} L
= PX[{ U U(Z,Q) U U U(X,s) U U U(Zm)}nEi]'
. ~ 1€L{a) ' seS(a) meM(x)
\d
Recall that, by the definition of Paa3’ § < y; forall ye Pua3’ so
U u( y )nE = @, and hence
» meM()

@) rgupegy = pt Ut e o U igne.
LRI ) ~ seS() 7

...............
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...................................................
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By the definitions of PO(a2 and E;, U(Z,s) nE; is of the form
Cygyslheeroxlyg 5. 1J]x[ysi,a)x[ys,m,1]x~--x[y5n.1] for all s € S{a).

Let

g = Dygplhesoalyg g 1 IxL08)lyg gupoTderxDygp 1)
and

Esl - [)’51’”"'"‘Us‘i-]’”x[o’ysi)x[ys,iﬂ’]]x"'x[ysn’]]

for seS{(a). Then ES=E;u[U( )nE],dnd \{E}>0and wa( )nE}»O.

It thus follows that

(4.6) Py [ U v U(y,) nEidu U)E]

~ tel{.¢) 20 seS(

1
©
>
.
C

U uty)aege Vet Ul onegd
L oveL{y ¢ s€S(a) seS(a)

- UU,nE}u‘UU neal+ e U el

~ .eL a) seS{a) ~ SES(a) >

-PX[('.UU( )nE}u{UU nE}nU E;]
S vel{a) seS{a) se€S(a)

C

JRE U U Uy Jnealerg Uoey

2 gL(a Y seS(a) ~ s€S(a)
—P[{ U Uly nE}n U E]smceU(yS)nE nk =9
~ 2€Ll(a) seS(a) °

for all seS(a).

Claim: Pt U £ - AIe U u(y)nEgd n U £.] > 0.
X seS(a) ~ s€l(a) seS(a) °

.....
.......

....................................
....................................................................
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Proof of claim: We show, equivalently, that

PX[{U U(Zﬂ)nE} ne U E¢}] > 0.
~ 2€L(a) seS(a) °

Since U U(xp)nEi c U U(,Zg) c U, it follows that
el (a) ‘ g€l (a) a

I { U U(xn)nEi}c > U%, and hence
peL () ' &

o U U(y, )nE; 1 0 U E}>v{U a U E:}

o€L (wt) s€S(a) s€S(a) °
> v{UgnES"} for each seS(a).

Consider the vector y' = (01- ,ys) € A for s € S(a); clearly y' € U;.
Since Ua is closed, by virtue of the continuity of v, U§ is open, SO
there exists a vector z € U such that z, > yJ'. for j#i and O<Zi<ysi'

i ze ;

Define E" = [y]',z]]x--.x[yr'l,zn]; clearly, E" < UgnE;. Thus

VIUSEL} > VIE"} > O, i.e. v({ U uy

NQ)nEi}C n U E;} > .0, so that,
2€L(a) '

s€S(a)

by Theorem 4.2, P[4 U U(yQ)nEi}c an U E:] >0,
2 ogel(a) M seS(a)

': This completes the proof of the claim. []

It now follows from (4.6) that

yoneru U e
s€S{a) °




P[{U Uy nEsy u £ U Uy, nE; ).
T ey T sty

Observe that

Pt U ugneu U e

2 gel(a) seS{a) S

P U [\{xJJm.} n (K <st) uiU Ny o (<6}

€L (o) j#i €S{a) j#i

ol U Ny, o U Ny 1100 <)

1€L{a) J#i s€S(a) j#i

by independence, and so from (4.5)

4.7 g <Pl U N ooy, 00 U N
! gela) jAi 97N seS(a) j#i 3“’/53

Thus, by (4.4) and (4.7), Ri(a) > 0, thereby contradicting the assumption
that R,i(a) = 0.

This completes the proof. [1.

Corollary 4.5

Let v be a continuous CSF such that v{Ud} >0 for all a € (0,1)
and suppose that X1”"’Xn are independent, absolutely continuous random
variables. Then Ri(a) > 0 for a € (0,1) if and only if y; # 0 for some
y € P, for which v{U(y)} > 0.
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